SMALLEST SUBFAMILIES OF MEAGER IDEALS ENSURING P-LIKE PROPERTIES

Pavol Jozef Šafárik University in Košice, Institute of Mathematics

Adam Marton 3 Feb, 2023

WS 2023

- $[X]^{<\omega} \subseteq \mathcal{I}, X \notin \mathcal{I},$
- $\mathcal I$ is closed under taking subsets and finite unions.

- $[X]^{<\omega} \subseteq \mathcal{I}, X \notin \mathcal{I},$
- $\mathcal I$ is closed under taking subsets and finite unions.

If I is an ideal on X, then I* := {X \ I : I ∈ I} is a dual filter to I.

- $[X]^{<\omega} \subseteq \mathcal{I}, X \notin \mathcal{I},$
- $\mathcal I$ is closed under taking subsets and finite unions.

- If \mathcal{I} is an ideal on X, then $\mathcal{I}^* := \{X \setminus I : I \in \mathcal{I}\}$ is a **dual filter** to \mathcal{I} .
- We denote the ideal of all finite subsets of X by Fin.

- $[X]^{<\omega} \subseteq \mathcal{I}, X \notin \mathcal{I},$
- $\mathcal I$ is closed under taking subsets and finite unions.

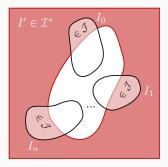
- If \mathcal{I} is an ideal on X, then $\mathcal{I}^* := \{X \setminus I : I \in \mathcal{I}\}$ is a **dual filter** to \mathcal{I} .
- We denote the ideal of all finite subsets of X by Fin.

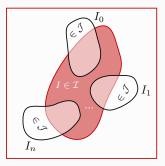
We can identify X with ω via a fixed bijection \rightarrow every time we talk about ideals on X, we are, in fact, talking about **ideals on** ω .

- $\mathcal{P}(\omega)$ is endowed with the Polish compact topology homeomorphic to the Cantor topology on $^{\omega}2$ via characteristic functions
- ^ω2 is being viewed as the product of infinitely many copies of {0,1} (with discrete topology) endowed with Tychonoff product topology
- an ideal \mathcal{I} on ω is meager if it is meager as a subset of the Cantor space $\mathcal{P}(\omega)$

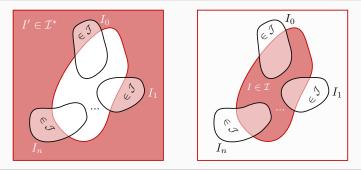
$P(\mathcal{J})$ -property

Let \mathcal{J} be an ideal on X. An ideal \mathcal{I} on X is said to be a $\mathbf{P}(\mathcal{J})$ -ideal, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I' \in \mathcal{I}^*$ such that $I_n \cap I' \in \mathcal{J}$ for every $n \in \omega$.



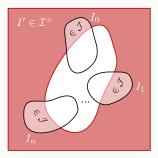


Let \mathcal{J} be an ideal on X. An ideal \mathcal{I} on X is said to be a $\mathbf{P}(\mathcal{J})$ -ideal, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I' \in \mathcal{I}^*$ such that $I_n \cap I' \in \mathcal{J}$ for every $n \in \omega$.

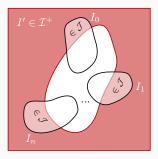


Let \mathcal{J} be an ideal on X. An ideal \mathcal{I} on X is said to be a $\mathbf{P}(\mathcal{J})$ -ideal, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_n \subseteq^{\mathcal{J}} I$ (i.e. $I_n \setminus I \in \mathcal{J}$) for every $n \in \omega$.

Let \mathcal{J} be an ideal on X. An ideal \mathcal{I} on X is said to be a **weak** $\mathbf{P}(\mathcal{J})$ -ideal, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I' \in \mathcal{I}^+$ such that $I_n \cap I' \in \mathcal{J}$ for every $n \in \omega$.



Let \mathcal{J} be an ideal on X. An ideal \mathcal{I} on X is said to be a **weak** $\mathbf{P}(\mathcal{J})$ -ideal, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I' \in \mathcal{I}^+$ such that $I_n \cap I' \in \mathcal{J}$ for every $n \in \omega$.



Clearly, if \mathcal{I} is a $P(\mathcal{J})$ -ideal, then it is a weak $P(\mathcal{J})$ -ideal as well.

• Sequences of sets can be equivalently replaced by partitions.

We call a function $f: \omega \to \omega \mathcal{I}$ -to-one if $f^{-1}[\{n\}] \in \mathcal{I}$ for any $n \in \omega$.

(M. Repický [1, 2], 2021)

Let \mathcal{J} be an ideal on ω . An ideal \mathcal{I} on ω is said to be a $\mathbf{P}(\mathcal{J})$ -ideal, if for each \mathcal{I} -to-one function f there is an $I' \in \mathcal{I}^*$ such that $f^{-1}[\{n\}] \cap I' \in \mathcal{J}$ for every $n \in \omega$.

Similarly for weak $P(\mathcal{J})$ -ideals.

Repický M., Spaces not distinguishing ideal convergences of real-valued functions, Real Anal. Exch. 46(2) (2021), 367–394.

Repický M., Spaces not distinguishing ideal convergences of real-valued functions II, Real Anal. Exch. 46(2) (2021), 395–422.

Theorem (M. Mačaj – M. Sleziak [1], 2010)

- Let X be a non-discrete first countable topological space and let \mathcal{I}, \mathcal{J} be ideals on ω . The following are equivalent:
- 1) \mathcal{I} is a $P(\mathcal{J})$ -ideal.
- In the Boolean algebra P(ω)/J the ideal I corresponds to a σ-directed subset.
- 3) For any sequence $\langle x_n : n \in \omega \rangle$ in X, if $\langle x_n : n \in \omega \rangle$ is \mathcal{I} -convergent to x then $\langle x_n : n \in \omega \rangle$ is $\mathcal{I}^{\mathcal{I}}$ -convergent to x.
 - Mačaj M. and Sleziak M., *I^K-convergence*, Real Anal. Exch. **36** (2010), 177–194.

Theorem (M. Mačaj – M. Sleziak [1], 2010)

- Let X be a non-discrete first countable topological space and let \mathcal{I}, \mathcal{J} be ideals on ω . The following are equivalent:
- 1) \mathcal{I} is a $P(\mathcal{J})$ -ideal.
- In the Boolean algebra P(ω)/J the ideal I corresponds to a σ-directed subset.
- 3) For any sequence $\langle x_n : n \in \omega \rangle$ in X, if $\langle x_n : n \in \omega \rangle$ is \mathcal{I} -convergent to x then $\langle x_n : n \in \omega \rangle$ is $\mathcal{I}^{\mathcal{I}}$ -convergent to x.

Mačaj M. and Sleziak M., *I^K-convergence*, Real Anal. Exch. **36** (2010), 177–194.

• Later: papers concerning various types of convergence spaces and related cardinal characteristics

The basic questions arising:

- For which ideals \mathcal{J} there is a non-P(\mathcal{J})-ideal (and how does it look like)?
- Is there some standard way of constructing non-P(*J*)-ideals or at least proving the existence?

The basic questions arising:

- For which ideals \mathcal{J} there is a non-P(\mathcal{J})-ideal (and how does it look like)?
- Is there some standard way of constructing non-P(*J*)-ideals or at least proving the existence?

A family $\mathcal{B} \subseteq \mathcal{I}$ is a **base** of \mathcal{I} , if \mathcal{B} is a cofinal subset of $\langle \mathcal{I}, \subseteq \rangle$.

 $cof(\mathcal{I}) = min\{|\mathcal{B}| : \mathcal{B} \text{ is a base of } \mathcal{I}\}.$

The basic questions arising:

- For which ideals \mathcal{J} there is a non-P(\mathcal{J})-ideal (and how does it look like)?
- Is there some standard way of constructing non-P(*J*)-ideals or at least proving the existence?

A family $\mathcal{B} \subseteq \mathcal{I}$ is a **base** of \mathcal{I} , if \mathcal{B} is a cofinal subset of $\langle \mathcal{I}, \subseteq \rangle$.

 $cof(\mathcal{I}) = min\{|\mathcal{B}| : \mathcal{B} \text{ is a base of } \mathcal{I}\}.$

An ideal \mathcal{I} on ω is **tall** if there is no set $Y \in [\omega]^{\omega}$ such that $\mathcal{I} \upharpoonright Y = [Y]^{<\omega}$, where $\mathcal{I} \upharpoonright Y = \{I \cap Y : I \in \mathcal{I}\}.$

The basic questions arising:

- For which ideals \mathcal{J} there is a non-P(\mathcal{J})-ideal (and how does it look like)?
- Is there some standard way of constructing non-P(*J*)-ideals or at least proving the existence?

A family $\mathcal{B} \subseteq \mathcal{I}$ is a **base** of \mathcal{I} , if \mathcal{B} is a cofinal subset of $\langle \mathcal{I}, \subseteq \rangle$.

 $cof(\mathcal{I}) = min\{|\mathcal{B}| : \mathcal{B} \text{ is a base of } \mathcal{I}\}.$

An ideal \mathcal{I} on ω is **tall** if there is no set $Y \in [\omega]^{\omega}$ such that $\mathcal{I} \upharpoonright Y = [Y]^{<\omega}$, where $\mathcal{I} \upharpoonright Y = \{I \cap Y : I \in \mathcal{I}\}.$

If there is not a finite subfamily C of \mathcal{E} with finite $\omega \setminus \bigcup C$ then an **ideal generated by** \mathcal{E} is the smallest ideal containing \mathcal{E} and Fin and we denote this ideal by $\langle \mathcal{E} \rangle$, i.e.

$$\langle \mathcal{E} \rangle = \left\{ E \in \mathcal{P}(M) : E \subseteq^* \bigcup \mathcal{E}' \text{ for some } \mathcal{E}' \in [\mathcal{E}]^{<\omega} \right\}.$$

Theorem

For any meager ideal \mathcal{J} on ω there is a tall meager non-P(\mathcal{J})-ideal \mathcal{I} with $cof(\mathcal{I}) = \mathfrak{c}$.

Theorem

For any meager ideal \mathcal{J} on ω there is a tall meager non-P(\mathcal{J})-ideal \mathcal{I} with $cof(\mathcal{I}) = \mathfrak{c}$.

• Intuitive observation: "size" from 4 points of view:

Theorem

For any meager ideal \mathcal{J} on ω there is a tall meager non-P(\mathcal{J})-ideal \mathcal{I} with $cof(\mathcal{I}) = \mathfrak{c}$.

 Intuitive observation: "size" from 4 points of view: topological and P(J): negligible/not "dense" set-theoretic: large/"dense"

Theorem

For any meager ideal \mathcal{J} on ω there is a tall meager non-P(\mathcal{J})-ideal \mathcal{I} with $cof(\mathcal{I}) = \mathfrak{c}$.

- Intuitive observation: "size" from 4 points of view: topological and P(J): negligible/not "dense" set-theoretic: large/"dense"
- Most of the critical ideals appearing in the literature **are meager**.

We wish to describe a size of a smallest family ensuring $P(\mathcal{J})$ -property for any $P(\mathcal{J})$ -ideal \mathcal{I} , i.e.,

 $\mathrm{cof}_{\mathrm{ct}}^{\mathcal{J}}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall \mathcal{C} \in [\mathcal{I}]^{\omega}) (\exists A \in \mathcal{A}) (\forall C \in \mathcal{C}) \ C \subseteq^{\mathcal{J}} A \}.$

We wish to describe a size of a smallest family ensuring $P(\mathcal{J})$ -property for any $P(\mathcal{J})$ -ideal \mathcal{I} , i.e.,

 $\mathrm{cof}_{\mathrm{ct}}^{\mathcal{J}}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall \mathcal{C} \in [\mathcal{I}]^{\omega}) (\exists A \in \mathcal{A}) (\forall C \in \mathcal{C}) \ C \subseteq^{\mathcal{J}} A \}.$

However, it is easy to see that for $P(\mathcal{J})$ -ideals we have

$$\mathrm{cof}_{\mathrm{ct}}^{\mathcal{J}}(\mathcal{I}) = \mathrm{cof}^{\mathcal{J}}(\mathcal{I}) := \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall I \in \mathcal{I}) (\exists A \in \mathcal{A}) \ I \subseteq^{\mathcal{J}} A\}.$$

We wish to describe a size of a smallest family ensuring $P(\mathcal{J})$ -property for any $P(\mathcal{J})$ -ideal \mathcal{I} , i.e.,

 $\mathrm{cof}_{\mathrm{ct}}^{\mathcal{J}}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall \mathcal{C} \in [\mathcal{I}]^{\omega}) (\exists A \in \mathcal{A}) (\forall C \in \mathcal{C}) \ C \subseteq^{\mathcal{J}} A\}.$

However, it is easy to see that for $P(\mathcal{J})$ -ideals we have

$$\mathrm{cof}_{\mathrm{ct}}^{\mathcal{J}}(\mathcal{I}) = \mathrm{cof}^{\mathcal{J}}(\mathcal{I}) := \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall I \in \mathcal{I}) (\exists A \in \mathcal{A}) \ I \subseteq^{\mathcal{J}} A\}.$$

Observation 1: If I is a P(J)-ideal, then to study cof^J_{ct}(I) means to study cof^J(I).

We wish to describe a size of a smallest family ensuring $P(\mathcal{J})$ -property for any $P(\mathcal{J})$ -ideal \mathcal{I} , i.e.,

 $\mathrm{cof}_{\mathrm{ct}}^{\mathcal{J}}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall \mathcal{C} \in [\mathcal{I}]^{\omega}) (\exists A \in \mathcal{A}) (\forall C \in \mathcal{C}) \ C \subseteq^{\mathcal{J}} A \}.$

However, it is easy to see that for $P(\mathcal{J})$ -ideals we have

$$\mathrm{cof}_{\mathrm{ct}}^{\mathcal{J}}(\mathcal{I}) = \mathrm{cof}^{\mathcal{J}}(\mathcal{I}) := \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall I \in \mathcal{I}) (\exists A \in \mathcal{A}) \ I \subseteq^{\mathcal{J}} A\}.$$

- Observation 1: If I is a P(J)-ideal, then to study cof^J_{ct}(I) means to study cof^J(I).
- Observation 2: cof ^J(I) = ∂(I, ⊆^J), therefore it can be seen as a modification of the cof*-invariant.

Lemma

Let $\mathcal{I}, \mathcal{J}, \mathcal{J}'$ be ideals on ω . Then the following holds true.

- a If $\mathcal{I} \subseteq \mathcal{J}$, then $\operatorname{cof}^{\mathcal{J}}(\mathcal{I}) = 1$, in particular, $\operatorname{cof}^{\mathcal{I}}(\mathcal{I}) = 1$.
- b $\operatorname{cof}^{\mathcal{J}}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{I}).$
- $\mathbf{c} \ \textit{ If } \mathcal{J} \subseteq \mathcal{J}', \ then \ \mathbf{cof}^{\mathcal{J}'}(\mathcal{I}) \leq \mathbf{cof}^{\mathcal{J}}(\mathcal{I}).$
- d Either $\operatorname{cof}^{\mathcal{J}}(\mathcal{I}) = 1$ or $\operatorname{cof}^{\mathcal{J}}(\mathcal{I}) \geq \omega$.
- e If \mathcal{I} is a $P(\mathcal{J})$ -ideal, then either $cof^{\mathcal{J}}(\mathcal{I}) = 1$ or $cof^{\mathcal{J}}(\mathcal{I}) \geq \omega_1$.

For $\mathcal{J} = Fin$ we have

Proposition (see. e.g. [1])

 $cof^{Fin}(\mathcal{I}) = cof(\mathcal{I})$ for any uncountably generated ideal \mathcal{I} .

M. Hrušák, *Combinatorics of filters and ideals*, Contemp. Math. **533** (2011), 29-69.

For $\mathcal{J} = Fin$ we have

Proposition (see. e.g. [1])

 $cof^{Fin}(\mathcal{I}) = cof(\mathcal{I})$ for any uncountably generated ideal \mathcal{I} .

M. Hrušák, Combinatorics of filters and ideals, Contemp. Math. 533 (2011), 29-69.

Consider the following standard construction of a P-ideal:

• Take an increasing chain in $\mathcal{P}(\omega)/\text{Fin of length }\omega_1$ with a chain of representatives $b = \langle B_{\alpha} : \alpha < \omega_1 \rangle$, s.t. $B_{\alpha} \subseteq^* B_{\beta}$ and $|B_{\beta} \setminus B_{\alpha}| = \omega$ for any $\alpha < \beta < \omega_1$.

For $\mathcal{J} = Fin$ we have

Proposition (see. e.g. [1])

 $cof^{Fin}(\mathcal{I}) = cof(\mathcal{I})$ for any uncountably generated ideal \mathcal{I} .

M. Hrušák, *Combinatorics of filters and ideals*, Contemp. Math. **533** (2011), 29-69.

Consider the following standard construction of a P-ideal:

- Take an increasing chain in $\mathcal{P}(\omega)/\text{Fin of length }\omega_1$ with a chain of representatives $b = \langle B_\alpha : \alpha < \omega_1 \rangle$, s.t. $B_\alpha \subseteq^* B_\beta$ and $|B_\beta \setminus B_\alpha| = \omega$ for any $\alpha < \beta < \omega_1$.
- $\mathcal{I} := \langle \{B_{\alpha} : \alpha < \omega_1\} \rangle$ is a P(Fin)-ideal by regularity of ω_1 .

For $\mathcal{J} = Fin$ we have

Proposition (see. e.g. [1])

 $cof^{Fin}(\mathcal{I}) = cof(\mathcal{I})$ for any uncountably generated ideal \mathcal{I} .

M. Hrušák, Combinatorics of filters and ideals, Contemp. Math. 533 (2011), 29-69.

Consider the following standard construction of a P-ideal:

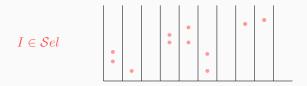
- Take an increasing chain in $\mathcal{P}(\omega)$ /Fin of length ω_1 with a chain of representatives $b = \langle B_{\alpha} : \alpha < \omega_1 \rangle$, s.t. $B_{\alpha} \subseteq^* B_{\beta}$ and $|B_{\beta} \setminus B_{\alpha}| = \omega$ for any $\alpha < \beta < \omega_1$.
- $\mathcal{I} := \langle \{B_{\alpha} : \alpha < \omega_1\} \rangle$ is a P(Fin)-ideal by regularity of ω_1 .
- $\operatorname{cof}(\mathcal{I}) = \omega_1 \to \text{using the previous Proposition we have } \operatorname{cof}^{\operatorname{Fin}}(\mathcal{I}) = \omega_1.$

Critical ideals on $\omega \times \omega$

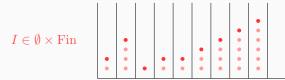
Fin
$$= [\omega \times \omega]^{<\omega},$$

- $$\begin{split} \mathbf{Fin} \times \pmb{\emptyset} &= \{I \subseteq \omega \times \omega : (\forall^{\infty} n < \omega) \ \{m : \langle n, m \rangle \in I\} = \emptyset\}, \\ & \text{ideal generated by columns} \end{split}$$
- $$\begin{split} \mathbf{Fin} \times \mathbf{Fin} &= \{I \subseteq \omega \times \omega : (\forall^{\infty} n < \omega) \; \{m : \langle n, m \rangle \in I\} \text{ is finite}\}, \\ & \text{supremum of } \{\text{Fin} \times \emptyset, \emptyset \times \text{Fin}\} \end{split}$$
- $$\begin{split} \boldsymbol{\mathcal{S}el} & = \{I \subseteq \omega \times \omega : (\exists k < \omega) (\forall n < \omega) \ |\{m : \langle n, m \rangle \in I\}| < k\}, \\ & \text{ideal generated by }^{\omega} \omega \\ \end{split}$$
- $$\begin{split} \boldsymbol{\mathcal{ED}} &= \{I \subseteq \omega \times \omega : (\exists k < \omega) (\forall^{\infty} n < \omega) \ |\{m : \langle n, m \rangle \in I\}| < k\}. \\ & \text{supremum of } \{\text{Fin} \times \emptyset, \mathcal{S}el\} \end{split}$$

A standard set of Sel:



A standard basic set of $\emptyset \times \operatorname{Fin:}$



Critical ideals on $\omega \times \omega$

We wish to find a value of $\operatorname{cof}^{\mathcal{J}}(\mathcal{I})$ for every reasonable pair \mathcal{I}, \mathcal{J} of ideals Fin, Fin $\times \emptyset, \emptyset \times$ Fin, Fin \times Fin, $\mathcal{S}el, \mathcal{ED}$, that is, for every pair for which we have a positive mark in the following table.

	Р	$\mathrm{P}(\mathrm{Fin}\times \emptyset)$	$\mathrm{P}(\emptyset \times \mathrm{Fin})$	$\mathrm{P}(\mathrm{Fin}\times\mathrm{Fin})$	P(Sel)	$P(\mathcal{ED})$
Fin	1	1	~	1	1	1
$\operatorname{Fin} \times \emptyset$	X	1	×	1	×	1
$\emptyset \times Fin$	1	1	~	1	1	1
$\operatorname{Fin} \times \operatorname{Fin}$	X	1	×	1	×	1
Sel	X	×	~	1	1	1
ED	X	×	×	1	×	1

Table: $P(\mathcal{J})$ interactions between critical ideals on $\omega \times \omega$

Critical ideals on $\omega \times \omega$

We wish to find a value of $\operatorname{cof}^{\mathcal{J}}(\mathcal{I})$ for every reasonable pair \mathcal{I}, \mathcal{J} of ideals Fin, Fin $\times \emptyset, \emptyset \times$ Fin, Fin \times Fin, $\mathcal{S}el, \mathcal{ED}$, that is, for every pair for which we have a positive mark in the following table.

	Р	$\mathrm{P}(\mathrm{Fin}\times \emptyset)$	$\mathrm{P}(\emptyset \times \mathrm{Fin})$	$P(Fin \times Fin)$	P(Sel)	$P(\mathcal{ED})$
Fin	1	1	1	1	1	1
$\operatorname{Fin} \times \emptyset$	X	1	×	1	×	1
$\emptyset \times Fin$	1	1	~	1	1	1
$\operatorname{Fin} \times \operatorname{Fin}$	X	1	×	1	×	1
Sel	X	×	~	1	1	1
ED	X	×	×	1	×	1

Table: $P(\mathcal{J})$ interactions between critical ideals on $\omega \times \omega$

$ \downarrow \mathcal{I} \ / \ \mathcal{J} \rightarrow$	Fin	$\operatorname{Fin}\times \emptyset$	$\emptyset \times \mathrm{Fin}$	$\mathrm{Fin}\times\mathrm{Fin}$	$\mathcal{S}el$	\mathcal{ED}
Fin	1	1	1	1	1	1
$Fin \times \emptyset$		1		1		1
$\emptyset \times Fin$	б	б	1	1	б	0
$\operatorname{Fin} \times \operatorname{Fin}$		б		1		б
Sel			1	1	1	1
ED				1		1

Table: Cardinal $cof_{ct}^{\mathcal{J}}(\mathcal{I}) = cof^{\mathcal{J}}(\mathcal{I})$ for all pairs of ideals considered in this work.

All $cof^{\mathcal{J}}(\mathcal{I})$ -numbers for every particular pair of ideals mentioned was either 1 or the cofinality of an ideal itself. Is it true in general?

All $\operatorname{cof}^{\mathcal{J}}(\mathcal{I})$ -numbers for every particular pair of ideals mentioned was either 1 or the cofinality of an ideal itself. Is it true in general? Let \mathcal{I}, \mathcal{J} be arbitrary two uncountably generated ideals on ω such

that $\omega_1 \leq \operatorname{cof}(\mathcal{J}) < \operatorname{cof}(\mathcal{I})$ and consider the disjoint sum

 $\mathcal{I} \oplus \mathcal{J} = \{A \subseteq \omega \times \{0,1\} : \{n : \langle n,0\rangle\} \in A\} \in \mathcal{I} \land \{m : \langle m,1\rangle \in A\} \in \mathcal{J}\}.$

All $cof^{\mathcal{J}}(\mathcal{I})$ -numbers for every particular pair of ideals mentioned was either 1 or the cofinality of an ideal itself. Is it true in general?

Let \mathcal{I}, \mathcal{J} be arbitrary two uncountably generated ideals on ω such that $\omega_1 \leq \operatorname{cof}(\mathcal{J}) < \operatorname{cof}(\mathcal{I})$ and consider the disjoint sum

 $\mathcal{I} \oplus \mathcal{J} = \{ A \subseteq \omega \times \{0,1\} : \{n : \langle n,0 \rangle \} \in A \} \in \mathcal{I} \land \{m : \langle m,1 \rangle \in A \} \in \mathcal{J} \}.$

Note that $cof(\mathcal{I} \oplus \mathcal{J}) = max\{cof(\mathcal{I}), cof(\mathcal{J})\}.$

All $cof^{\mathcal{J}}(\mathcal{I})$ -numbers for every particular pair of ideals mentioned was either 1 or the cofinality of an ideal itself. Is it true in general?

Let \mathcal{I}, \mathcal{J} be arbitrary two uncountably generated ideals on ω such that $\omega_1 \leq \operatorname{cof}(\mathcal{J}) < \operatorname{cof}(\mathcal{I})$ and consider the disjoint sum

 $\mathcal{I} \oplus \mathcal{J} = \{A \subseteq \omega \times \{0,1\} : \{n : \langle n,0\rangle\} \in A\} \in \mathcal{I} \land \{m : \langle m,1\rangle \in A\} \in \mathcal{J}\}.$

Note that $cof(\mathcal{I} \oplus \mathcal{J}) = max\{cof(\mathcal{I}), cof(\mathcal{J})\}$. Clearly

 $\texttt{cof}^{\mathcal{I} \oplus \mathrm{Fin}}(\mathcal{I} \oplus \mathcal{J}) = \texttt{cof}^{\mathrm{Fin}}(\mathcal{J}) = \texttt{cof}(\mathcal{J}) < \texttt{cof}(\mathcal{I}) = \texttt{cof}(\mathcal{I} \oplus \mathcal{J}).$

All $cof^{\mathcal{J}}(\mathcal{I})$ -numbers for every particular pair of ideals mentioned was either 1 or the cofinality of an ideal itself. Is it true in general?

Let \mathcal{I}, \mathcal{J} be arbitrary two uncountably generated ideals on ω such that $\omega_1 \leq \operatorname{cof}(\mathcal{J}) < \operatorname{cof}(\mathcal{I})$ and consider the disjoint sum

 $\mathcal{I} \oplus \mathcal{J} = \{ A \subseteq \omega \times \{0,1\} : \{ n : \langle n,0 \rangle \} \in A \} \in \mathcal{I} \land \{ m : \langle m,1 \rangle \in A \} \in \mathcal{J} \}.$

Note that $cof(\mathcal{I} \oplus \mathcal{J}) = max\{cof(\mathcal{I}), cof(\mathcal{J})\}$. Clearly

$$\mathrm{cof}^{\mathcal{I}\oplus\mathrm{Fin}}(\mathcal{I}\oplus\mathcal{J})=\mathrm{cof}^{\mathrm{Fin}}(\mathcal{J})=\mathrm{cof}(\mathcal{J})<\mathrm{cof}(\mathcal{I})=\mathrm{cof}(\mathcal{I}\oplus\mathcal{J}).$$

So, it may happen that

$$\omega < \mathrm{cof}^{\mathcal{J}}(\mathcal{I}) < \mathrm{cof}(\mathcal{I}).$$

Recall the definition

Let \mathcal{J} be an ideal on X. An ideal \mathcal{I} on X is said to be a **weak** $\mathbf{P}(\mathcal{J})$ -ideal, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I' \in \mathcal{I}^+$ such that $I_n \cap I' \in \mathcal{J}$ for every $n \in \omega$.

So an ideal \mathcal{I} is **not** a weak $P(\mathcal{J})$ -ideal, if there is a countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ such that for any $I' \in \mathcal{I}^+$ there is n s.t. $I_n \cap I' \notin \mathcal{J}$. Now consider

 $\operatorname{cov}^+(\mathcal{I}) = \min\{|\mathcal{E}| : \mathcal{E} \subseteq \mathcal{I} \land \ (\forall I' \in \mathcal{I}^+) (\exists I \in \mathcal{E}) \ |I \cap I'| = \omega\}.$

- B. Farkas and L. Zdomskyy, Ways of destruction, J. Symb. Log., 87(3) (2022), 938-966.
- O. Guzmán-González., M. Hrušák, C. A. Martínez-Ranero and U. A. Ramos-García, *Generic existence of MAD families*, J. Symb. Log. 82(1) (2017), 303-316.

Recall the definition

Let \mathcal{J} be an ideal on X. An ideal \mathcal{I} on X is said to be a **weak** $\mathbf{P}(\mathcal{J})$ -ideal, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I' \in \mathcal{I}^+$ such that $I_n \cap I' \in \mathcal{J}$ for every $n \in \omega$.

So an ideal \mathcal{I} is **not** a weak $P(\mathcal{J})$ -ideal, if there is a countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ such that for any $I' \in \mathcal{I}^+$ there is n s.t. $I_n \cap I' \notin \mathcal{J}$. Now consider

 $\operatorname{cov}^+(\mathcal{I}) = \min\{|\mathcal{E}| : \mathcal{E} \subseteq \mathcal{I} \land \ (\forall I' \in \mathcal{I}^+) (\exists I \in \mathcal{E}) \ |I \cap I'| = \omega\}.$

- B. Farkas and L. Zdomskyy, Ways of destruction, J. Symb. Log., 87(3) (2022), 938-966.
- O. Guzmán-González., M. Hrušák, C. A. Martínez-Ranero and U. A. Ramos-García, *Generic existence of MAD families*, J. Symb. Log. 82(1) (2017), 303-316.

Clearly, an ideal \mathcal{I} is not a weak P(Fin)-ideal iff $cov^+(\mathcal{I}) \leq \omega$.

$\operatorname{cov}^+(\langle \mathcal{A} \rangle)$ is uncountable ($\geq \mathfrak{b}$) for any MAD family \mathcal{A} .

 $\operatorname{cov}^+(\langle \mathcal{A} \rangle)$ is uncountable ($\geq \mathfrak{b}$) for any MAD family \mathcal{A} .

Recall that $\mathcal{I} \leq_K \mathcal{J}$ iff there is $f \in {}^{\omega}\omega$ s.t. $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$.

 $\operatorname{cov}^+(\langle \mathcal{A} \rangle)$ is uncountable ($\geq \mathfrak{b}$) for any MAD family \mathcal{A} .

Recall that $\mathcal{I} \leq_K \mathcal{J}$ iff there is $f \in {}^{\omega}\omega$ s.t. $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$.

Theorem (C. Laflamme, M. Hrušák, P. Szuca, R. Filipów, M. Laczkovich, I. Reclaw)

TFAE

- 1) \mathcal{I} is not a weak P(Fin)-ideal.
- 2) Fin \times Fin $\leq_K \mathcal{I}$.

 $\operatorname{cov}^+(\langle \mathcal{A} \rangle)$ is uncountable ($\geq \mathfrak{b}$) for any MAD family \mathcal{A} .

Recall that $\mathcal{I} \leq_K \mathcal{J}$ iff there is $f \in {}^{\omega}\omega$ s.t. $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$.

Theorem (C. Laflamme, M. Hrušák, P. Szuca, R. Filipów, M. Laczkovich, I. Reclaw)

TFAE

- 1) \mathcal{I} is not a weak P(Fin)-ideal.
- 2) Fin \times Fin $\leq_K \mathcal{I}$.

Corollary

Fin × Fin $\not\leq_K \langle \mathcal{A} \rangle$ for any MAD family $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

 $\operatorname{cov}^+(\langle \mathcal{A} \rangle)$ is uncountable ($\geq \mathfrak{b}$) for any MAD family \mathcal{A} .

Recall that $\mathcal{I} \leq_K \mathcal{J}$ iff there is $f \in {}^{\omega}\omega$ s.t. $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$.

Theorem (C. Laflamme, M. Hrušák, P. Szuca, R. Filipów, M. Laczkovich, I. Reclaw)

TFAE

- 1) \mathcal{I} is not a weak P(Fin)-ideal.
- 2) Fin \times Fin $\leq_K \mathcal{I}$.

Corollary

Fin × Fin $\not\leq_K \langle \mathcal{A} \rangle$ for any MAD family $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

Moreover, if \mathcal{A} is a MAD family, then $\langle \mathcal{A} \rangle$ is tall, thus, $\langle \mathcal{A} \rangle \not\leq_K$ Fin.

So, we have

Fin × Fin $\not\leq_K \langle \mathcal{A} \rangle \not\leq_K$ Fin.

So, we have

Fin × Fin $\not\leq_K \langle \mathcal{A} \rangle \not\leq_K$ Fin.

However, we know that Fin $\leq_K \langle \mathcal{A} \rangle \leq_K$ Fin × Fin, therefore

Fin $<_K \langle \mathcal{A} \rangle <_K$ Fin × Fin.

Thank you

Marton A., P-like properties of meager ideals and cardinal invariants, manuscript submitted for publication.

Marton A., Šupina J., On P-like ideals induced by disjoint families, manuscript submitted for publication, arXiv:2212.07260.